skip to main content


Search for: All records

Creators/Authors contains: "Wilson, Margaret"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Plant development requires communication on many levels, including between cells and between organelles within a cell. For example, mitochondria and plastids have been proposed to be sensors of environmental stress and to coordinate their responses. Here we present evidence for communication between mitochondria and chloroplasts during leaf and root development, based on genetic and physical interactions between threeMechanosensitive channel ofSmall conductance‐Like (MSL) proteins fromArabidopsis thaliana.MSLproteins areArabidopsishomologs of the bacterialMechanosensitivechannel ofSmall conductance (MscS), which relieves cellular osmotic pressure to protect against lysis during hypoosmotic shock.MSL1 localizes to the inner mitochondrial membrane, whileMSL2 andMSL3 localize to the inner plastid membrane and are required to maintain plastid osmotic homeostasis during normal growth and development. In this study, we characterized the phenotypic effect of a genetic lesion inMSL1, both in wild type and inmsl2 msl3mutant backgrounds.msl1single mutants appear wild type for all phenotypes examined. The characteristic leaf rumpling inmsl2 msl3double mutants was exacerbated in themsl1 msl2 msl3triple mutant. However, the introduction of themsl1lesion into themsl2 msl3mutant background suppressed othermsl2 msl3mutant phenotypes, including ectopic callus formation, accumulation of superoxide and hydrogen peroxide in the shoot apical meristem, decreased root length, and reduced number of lateral roots. All these phenotypes could be recovered by molecular complementation with a transgene containing a wild type version ofMSL1. In yeast‐based interaction studies,MSL1 interacted with itself, but not withMSL2 orMSL3. These results establish that the abnormalities observed inmsl2 msl3double mutants is partially dependent on the presence of functionalMSL1 and suggest a possible role for communication between plastid and mitochondria in seedling development.

     
    more » « less
  3. Abstract

    A growing body of literature has documented myriad effects of human activities on animal behaviour, yet the ultimate ecological consequences of these behavioural shifts remain largely uninvestigated. While it is understood that, in the absence of humans, variation in animal behaviour can have cascading effects on species interactions, community structure and ecosystem function, we know little about whether the type or magnitude of human‐induced behavioural shifts translate into detectable ecological change. Here we synthesise empirical literature and theory to create a novel framework for examining the range of behaviourally mediated pathways through which human activities may affect different ecosystem functions. We highlight the few empirical studies that show the potential realisation of some of these pathways, but also identify numerous factors that can dampen or prevent ultimate ecosystem consequences. Without a deeper understanding of these pathways, we risk wasting valuable resources on mitigating behavioural effects with little ecological relevance, or conversely mismanaging situations in which behavioural effects do drive ecosystem change. The framework presented here can be used to anticipate the nature and likelihood of ecological outcomes and prioritise management among widespread human‐induced behavioural shifts, while also suggesting key priorities for future research linking humans, animal behaviour and ecology.

     
    more » « less